Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
seminar class
Active In SP

Posts: 5,361
Joined: Feb 2011
24-02-2011, 09:36 AM


.doc   ADVANCES_IN_AUTOMOBILE_ENGINEERING.doc (Size: 467 KB / Downloads: 191)

In this manuscript, research on hydrogen internal combustion engines is discussed. The objective of this paper is to provide a means of renewable hydrogen based fuel utilization. The development of a high efficiency, low emissions electrical generator will lead to establishing a path for renewable hydrogen based fuel utilization. A full-scale prototype will be produced in collaboration with commercial manufacturers.
The electrical generator is based on developed internal combustion engine technology. It is able to operate on many hydrogen-containing fuels. The efficiency and emissions are comparable to fuel cells (50% fuel to electricity, ~ 0 NOx). This electrical generator is applicable to both stationary power and hybrid vehicles. It also allows specific markets to utilize hydrogen economically and painlessly. Fuel cells are generally considered to be ideal devices for these applications where hydrogen or methane are used as fuel. However, the extensive development of the IC engine, and the existence of repair and maintenance industries associated with piston engines provide strong incentives to remain with this technology until fuel cells are proven reliable and cost competitive.
Two motivators for the use of hydrogen as an energy carrier today are: 1) to provide a transition strategy from hydrocarbon fuels to a carbonless society and 2) to enable renewable energy sources. The first motivation requires a little discussion while the second one is self-evident. The most common and cost effective way to produce hydrogen today is the reformation of hydrocarbon fuels, specifically natural gas. Robert Williams discusses the cost and viability of natural gas reformation with CO2 sequestration as a cost-effective way to reduce our annual CO2 emission levels. He argues that if a hydrogen economy was in place then the additional cost of natural gas reformation and subsequent CO2 sequestration is minimal
Decarbonization of fossil fuels with subsequent CO2 sequestration to reduce or eliminate our CO2 atmospheric emissions provides a transition strategy to a renewable, sustainable, carbonless society. However, this requires hydrogen as an energy carrier.
Electrical generators capable of high conversion efficiencies and extremely low exhaust emissions will no doubt power advanced hybrid vehicles and stationary power systems. In addition, while the fuel cell enjoys high public relations appeal, it seems possible that it may not offer significant efficiency advantages relative to an optimized combustion system. In light of these factors, the capabilities of internal combustion engines have been reviewed.
In regards to thermodynamic efficiency, the Otto cycle theoretically represents the best option for an IC engine cycle. This is due to the fact that the fuel energy is converted to heat at constant volume when the working fluid is at maximum compression. This combustion condition leads to the highest possible peak temperatures, and thus the highest possible thermal efficiencies.
Edson (1964) analytically investigated the efficiency potential of the ideal Otto cycle using compression ratios (CR) up to 300:1, where the effects of chemical dissociation, working fluid thermodynamic properties, and chemical species concentration were included. He found that even as the compression ratio is increased to 300:1, the thermal efficiency still increases for all of the fuels investigated. At this extreme operating for instance, the cycle efficiency for isooctane fuel at stoichiometric ratio is over 80%.
Caris and Nelson (1959) investigated the use of high compression ratios for improving the thermal efficiency of a production V8 spark ignition engine. They found that operation at compression ratios above about 17:1 did not continue to improve the thermal efficiency in their configuration. They concluded that this was due to the problem of non-constant volume combustion, as time is required to propagate the spark-ignited flame.
In addition to the problem of burn duration, other barriers exist. These include the transfer of heat energy from the combustion gases to the cylinder walls, as well as the operating difficulties associated with increased pressure levels for engines configured to compression ratios above 25:1 (Overington and Thring 1981, Muranaka and Ishida 1987). Still, finite burn duration remains the fundamental challenge to using high compression ratios.
Homogeneous operation precludes diesel- type combustion, and spark-ignition operation on premixed charges tends to limit the operating compression ratio due to uncontrolled autoignition, or knock. As well, very lean fuel/air mixtures are difficult, or impossible to spark ignite.
On the other hand, lean charges have more favorable specific heat ratios relative to stoichiometric mixtures, and this leads to improved cycle thermal efficiencies. Equivalence ratio is no longer required to be precisely controlled, as is required in conventional stoichiometric operation when utilizing tree way catalysts. Equivalence ratio is defined here as the ratio of the actual fuel/air ratio to the stoichiometric ratio.
Combustion Approach
Homogeneous charge compression ignition combustion could be used to solve the problems of burn duration and allow ideal Otto cycle operation to be more closely approached.. Numerous ignition points throughout the mixture can ensure very rapid combustion (Onishi et al 1979). Very low equivalence ratios (ö ~ 0.3) can be used since no flame propagation is required. Further, the useful compression ratio can be increased as higher temperatures are required to autoignite weak mixtures .
HCCI operation is unconventional, but is not new. As early as 1957 Alperstein et al. (1958) experimented with premixed charges of hexane and air, and n-heptane and air in a Diesel engine. They found that under certain operating conditions their single cylinder engine would run quite well in a premixed mode with no fuel injection whatsoever. In general, HCCI combustion has been shown to be faster than spark ignition or compression ignition combustion. And much leaner operation is possible than in SI engines, while lower NOx emissions result. .
Conventional pressure profiles have resulted (Thring 1989, Najt and Foster 1983). In order to maximize the efficiency potential of HCCI operation much higher compression ratios must be used, and a very rapid combustion event must be achieved. Recent work with higher compression ratios (~21:1) has demonstrated the high efficiency potential of the HCCI process (Christensen et al 1998, Christensen et al 1997).
In Figure 1, the amount of work attained from a modern 4-stroke heavy duty diesel engine is shown at a 16.25 : 1 compression ratio. The results show that under ideal Otto cycle conditions (constant volume combustion), 56% more work is still available. This extreme case of non-ideal Otto cycle behavior serves to emphasize how much can be gained by approaching constant volume combustion

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: ppt on advanced in automobile engg, engineering advancements in automobiles, mechanical advancement in automobile, mechanical advancement in automobile technology, automobile engineering ppt presentation, technical seminar topics for automobile engineering pdf, 1959 advancements in engineering,
Popular Searches: software engineering in automobiles seminar topics, projects on automobiles for engineering, advances in automobiles hybrid vehicles, advance in automobile ppt, advances in automobile engineering**s report, advances in power plant engineering seminar, automobile seminars topics,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  coconut dehusking machine mechanical engineering project jaseelati 0 308 23-02-2015, 03:35 PM
Last Post: jaseelati
  recent trends in mechanical engineering ppt jaseelati 0 264 23-02-2015, 02:26 PM
Last Post: jaseelati
  basics of automobile engineering ppt jaseelati 0 165 06-02-2015, 01:48 PM
Last Post: jaseelati
  mechanical engineering seminar topics pdf jaseelati 0 232 29-01-2015, 03:25 PM
Last Post: jaseelati
  automobile engineering ppt lecture notes jaseelati 0 248 15-01-2015, 04:39 PM
Last Post: jaseelati
  latest mechanical engineering seminar topics 2014 jaseelati 0 191 15-01-2015, 03:57 PM
Last Post: jaseelati
  mechanical engineering projects list jaseelati 0 293 09-01-2015, 03:23 PM
Last Post: jaseelati
  seminar topic for mechanical engineering 2014 jaseelati 0 195 07-01-2015, 03:29 PM
Last Post: jaseelati
  Abstract of Embedded System in Automobiles seminar projects maker 0 334 28-09-2013, 12:40 PM
Last Post: seminar projects maker
  Engineering Seminar Topic livon 0 502 25-07-2013, 11:43 AM
Last Post: livon