Adaptive Blind Noise Suppression in some Speech Processing Applications
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
computer science crazy
Super Moderator

Posts: 3,048
Joined: Dec 2008
21-09-2008, 11:36 AM

In many applications of speech processing the noise reveals some specific features. Although the noise could be quite broadband, there are a limited number of dominant frequencies, which carry the most of its energy. This fact implies the usage of narrow-band notch filters that must be adaptive in order to track the changes in noise characteristics. In present contribution, a method and a system for noise suppression are developed. The method uses adaptive notch filters based on second-order Gray-Markel lattice structure. The main advantages of the proposed system are that it has very low computational complexity, is stable in the process of adaptation, and has a short time of adaptation. Under comparable SNR improvement, the proposed method adjusts only 3 coefficients against 250-450 for the conventional adaptive noise cancellation systems. A framework for a speech recognition system that uses the proposed method is suggested.


The noise existence is inevitable in real applications of speech processing. It is well known that the additive noise affects negatively the performance of the speech codecs designed to work with noise-free speech especially codecs based on linear prediction coefficients (LPC). Another application strongly influenced by noise is related to the hands free phones where the background noise reduces the signal to noise ratio (S/N) and the speech intelligibility.

Last but not least, is the problem of speech recognition in a noisy environment. A system that works well in noise-free conditions, usually shows considerable degradation in performance when background noise is present It is clear that a strong demand for reliable noise cancellation methods exists that efficiently separate the noise from speech signal. The endeavors in designing of such systems can be followed some 20 years ago The core of the problem is that in most situations the characteristics of the noise are not known a priori and moreover they may change in time. This implies the use of adaptive systems capable of identifying and tracking the noise characteristics. This is why the application of adaptive filtering for noise cancellation is widely used.

The classical systems for noise suppression rely on the usage of adaptive linear filtering and the application of digital filters with finite impulse response (FIR). The strong points of this approach are the simple analysis of the linear systems in the process of adaptation and the guaranteed stability of FIR structures. It is worth mentioning the existence of relatively simple and well investigated adaptive algorithms for such kind of systems as least mean squares (LMS) and recursive least squares (RLS) algorithms. The investigations in the area of noise cancellation reveal that in some applications the nonlinear filters outperform their linear counterparts. That fact is a good motivation for a shift towards the usage of nonlinear systems in noise reduction .Another approach is based on a microphone array instead of the two microphones, reference and primary, that are used in the classical noise cancellation scheme .

A brief analysis of all mentioned approaches leads to the conclusion that they try to model the noise path either by a linear or by a nonlinear system. Each of these methods has its strengths and weaknesses. For example, for the classical noise cancellation with two microphones this is the need of reference signal; for the neural filters - the fact that as a rule they are slower than classic adaptive filters and they are efficient only for noise suppression on relatively short data sequences which is not true for speech processing and finally for microphone arrays - the need of precise space alignment In present contribution the approach is slightly different.

The basic idea is that in many applications, for instance, hands-free cellular phones in car environment howling control in hands-free phones, noise reduction in an office environment, the noise reveals specific features that can be exploited. In most instances although the noise might be quite wide-band, there are always, as a rule, no more than two or three regions of its frequency spectrum that carry most of the noise energy and the removal of these dominant frequencies results in a considerable improvement of S/N ratio. This brings the idea to use notch adaptive filters capable of tracking the noise characteristics. In this paper a modification of all-pass structures is used They are recursive, and at the same time, are stable during the adaptive process. The approach is called "blind" because there is no need of a reference signal.
Use Search at wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: noise suppression in speech processing, speech processing, report on adaptive blind noise supression in some speech signal application,
Popular Searches: a seminar topic of speech processing, polution speech, speech recogntion, blind barber nyc, what are applications of intrernet, ssop sidelobe suppression with orthogonal projection, applications of geogrid encasement,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  spurious-power suppression technique (SPST) seminar tips 2 528 12-03-2016, 03:31 PM
Last Post: mkaasees
  adaptive piezoelectric energy harvesting circuit ppt jaseelati 0 305 09-01-2015, 03:45 PM
Last Post: jaseelati
  vl7101 vlsi signal processing jaseelati 0 212 11-12-2014, 02:01 PM
Last Post: jaseelati
  Advanced FACTS Devices and Applications: Performance, Power Quality and Cost Consider seminar projects maker 0 1,334 28-09-2013, 04:54 PM
Last Post: seminar projects maker
  A SPURIOUS-POWER SUPPRESSION TECHNIQUE FOR MULTIMEDIA/DSP APPLICATIONS pdf seminar projects maker 0 1,474 28-09-2013, 03:25 PM
Last Post: seminar projects maker
  Digital Media Processing Report seminar projects maker 0 508 28-09-2013, 02:30 PM
Last Post: seminar projects maker
  DELTA MODULATION AND ADAPTIVE DELTA MODULATION REPORT seminar projects maker 0 458 25-09-2013, 03:14 PM
Last Post: seminar projects maker
  Signal Processing and Modulation pdf seminar projects maker 0 443 21-09-2013, 04:31 PM
Last Post: seminar projects maker
  Biomedical Signal Processing PPT study tips 0 522 30-08-2013, 03:37 PM
Last Post: study tips
  Detection of Signals in Noise pdf study tips 0 371 29-08-2013, 04:57 PM
Last Post: study tips