Artificial Neural Network (ANN)
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
computer science crazy
Super Moderator

Posts: 3,048
Joined: Dec 2008
23-09-2008, 12:37 AM

An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well.

Neural network simulations appear to be a recent development. However, this field was established before the advent of computers, and has survived several eras. Many important advances have been boosted by the use of inexpensive computer emulations. The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter Pitts.

There were some initial simulations using formal logic. McCulloch and Pitts (1943) developed models of neural networks based on their understanding of neurology. These models made several assumptions about how neurons worked. Their networks were based on simple neurons, which were considered to be binary devices with fixed threshold.

Not only was neuroscience, but psychologists and engineers also contributed to the progress of neural network simulations. Rosenblatt (1958) stirred considerable interest and activity in the field when he designed and developed the Perceptron. The Perceptron had three layers with the middle layer known as the association layer. This system could learn to connect or associate a given input to a random output unit.

Another system was the ADALINE (Adaptive Linear Element) which was developed in 1960 by Widrow and Hoff (of Stanford University). The ADALINE was an analogue electronic device made from simple components. The method used for learning was different to that of the Perceptron, it employed the Least-Mean-Squares (LMS) learning rule. Progress during the late 1970s and early 1980s was important to the re-emergence on interest in the neural network field.Significant progress has been made in the field of neural networks-enough to attract a great deal of attention and fund further research. Neurally based chips are emerging and applications to complex problems developing. Clearly, today is a period of transition for neural network technology.

Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyze. This expert can then be used to provide project and implimentationions given new situations of interest and answer "w
Use Search at wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: artificial neural network ann pdf, inftionmation about art 1 network of ann,
Popular Searches: what are steps for the artificial neural network for the project report, impoertance of artificial passanger, artificial neural network biotechnology project, neural network doc, artificial neural network in civil eg ppt, neural wavereader, 4 application of artificial neural network ann technique for the measurement of voltage stability,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  Routing protocols in Mobile Ad Hoc Network PPT project girl 0 579 08-02-2013, 11:37 AM
Last Post: project girl
  FILTERING UNWANTED PACKETS ON ATM NETWORK PPT project girl 0 821 20-12-2012, 05:53 PM
Last Post: project girl
  virtual private network VPN full report computer science technology 11 15,723 07-11-2012, 10:54 AM
Last Post: seminar tips
  Seminar Report On Artificial Intelligence seminar flower 0 727 08-10-2012, 03:16 PM
Last Post: seminar flower
  CYBERCRIME & NETWORK SECURITY seminar flower 1 1,565 05-10-2012, 11:44 AM
Last Post: seminar tips
  cryptography and network security full report computer science technology 18 20,943 03-08-2012, 11:31 AM
Last Post: seminar ideas
  Knowledge sharing on social network models in Iran project uploader 0 452 24-07-2012, 11:06 AM
Last Post: project uploader
  Network Latency Monitor seminar class 2 1,845 07-07-2012, 09:22 AM
Last Post: seminar ideas
  Increasing Throughput Efficiency of Adhoc Cognitive Radio Networks Using Neural ..... uploader 0 576 02-06-2012, 02:17 PM
Last Post: uploader
  Artificial Intelligence in Computer Games seminar ideas 0 405 11-05-2012, 11:05 AM
Last Post: seminar ideas