Concentrating Solar Power
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Active In SP

Posts: 2
Joined: Feb 2010
22-02-2010, 07:42 PM

please give me mor einfo abt this
seminar surveyer
Active In SP

Posts: 3,541
Joined: Sep 2010
23-09-2010, 03:36 PM

Concentrated solar power (CSP) systems use lenses or mirrors to focus a large area of sunlight onto a small area. Electrical power is produced when the concentrated light is directed onto photovoltaic surfaces or used to heat a transfer fluid for a conventional power plant.

Concentrated solar thermal:
Concentrated solar thermal (CST) is used to produce renewable heat or cool or electricity (called solar thermoelectricity, usually generated through steam). CST systems use lenses or mirrors and tracking systems to focus a large area of sunlight onto a small area. The concentrated light is then used as heat or as a heat source for a conventional power plant (solar thermoelectricity).
A wide range of concentrating technologies exist, including the parabolic trough, Dish Stirling, Concentrating Linear Fresnel Reflector, Solar chimney and solar power tower. Each concentration method is capable of producing high temperatures and correspondingly high thermodynamic efficiencies, but they vary in the way that they track the Sun and focus light. Due to new innovations in the technology, concentrating solar thermal is becoming more and more cost-effective.
A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned directly above the middle of the parabolic mirror and is filled with a working fluid. The reflector follows the Sun during the daylight hours by tracking along a single axis. A working fluid (eg molten salt) is heated to 150–350 °C (423–623 K (302–662 °F)) as it flows through the receiver and is then used as a heat source for a power generation system.Trough systems are the most developed CSP technology. The Solar Energy Generating Systems (SEGS) plants in California, Acciona's Nevada Solar One near Boulder City, Nevada, and Plataforma Solar de Almería's SSPS-DCS plant in Spain are representative of this technology

seminar class
Active In SP

Posts: 5,361
Joined: Feb 2011
26-03-2011, 02:45 PM

Gaurav Kr. Verma

.ppt   gaurav.ppt (Size: 2.02 MB / Downloads: 55)

• Coal
• Oil
• Natural Gas
• Nuclear (Uranium) etc.
Why Solar Energy ?
 primary energy resource
 Environment friendly Source of energy
 Most Abundant source of Energy
 Solar energy is, and has always been, the Earth’s
• Drives our climate.
• Responsible for plant photosynthesis.
 Clean Source of Energy.
 No residues. No harmful radiations.
 No global warming gases.
 Application of solar energy
• Hot water generation
• Steam generation
• Heating & Cooling
• Solar Cooking
• Solar Distillation (solar still)
• Solar Green House
• Power generation
• Solar Furnace
What is CSP (Concentrated Solar Power) ?
Concentrating solar power (CSP) is a renewable generation technology that uses mirrors or lenses to concentrate the sun’s rays to heat a fluid, e.g., water, which produces steam to drive turbine. The plants consist of two parts: one that collects solar energy and converts it to heat, and another that converts heat energy to electricity
 Concentrating solar power systems can be sized for village power (10 kilowatts) or grid-connected applications (up to 100 megawatts). Some systems use thermal storage during cloudy periods or at night.
 Others can be combined with natural gas and the resulting hybrid power plants provide high-value, dispatchable power. These attributes, along with world record solar-to-electric conversion efficiencies, make concentrating solar power an attractive renewable energy option in the Southwest and other sunbelt regions worldwide.
• Solar energy is not “concentrated” in the same way as fossil fuels.
• It needs to be “collected” before it can be used.
• It sometimes must be stored since it’s not always available when needed different types of Concentrator is use to collect them.
 Different technology
• Parabolic trough
• solar power tower
• solar chimney
• Solar Dish Engin
Parabolic trough collector
• A Parabolic trough is a large, curved mirror that sits on a motorized base, allowing it to follow the movement of the sun throughout the day.
Basic Principle (Power of parabola)
• A Parabolic trough is a one-dimensional parabola that focuses solar energy onto a line at it’s focal point. Physically, this line is a pipe with flowing liquid inside that absorbs the heat transmitted through the pipe wall and delivers it to the thermal load. High temperature up to 400 °C Can be obtained.
• A trough captures sunlight over a large aperture area and concentrates this energy onto a much smaller receiver area, concentrating the intensity of the sun.
seminar class
Active In SP

Posts: 5,361
Joined: Feb 2011
22-04-2011, 11:14 AM

.doc   Solar Power Energy.doc (Size: 332.5 KB / Downloads: 72)
Mirror mirror on the wall, what's the greatest energy source of all? The sun. Enough energy from the sun falls on the Earth everyday to power our homes and businesses for almost 30 years. Yet we've only just begun to tap its potential. You may have heard about solar electric power to light homes or solar thermal power used to heat water, but did you know there is such a thing as solar thermal-electric power? Electric utility companies are using mirrors to concentrate heat from the sun to produce environmentally friendly electricity for cities, especially in the southwestern United States. The southwestern United States is focusing on concentrating solar energy because it's one of the world's best areas for sunlight. The Southwest receives up to twice the sunlight as other regions in the country. This abundance of solar energy makes concentrating solar power plants an attractive alternative to traditional power plants, which burn polluting fossil fuels such as oil and coal. Fossil fuels also must be continually purchased and refined to use. Unlike traditional power plants, concentrating solar power systems provide an environmentally benign source of energy, produce virtually no emissions, and consume no fuel other than sunlight. About the only impact concentrating solar power plants have on the environment is land use. Although the amount of land a concentrating solar power plant occupies is larger than that of a fossil fuel plant, both types of plants use about the same amount of land because fossil fuel plants use additional land for mining and exploration as well as road building to reach the mines. Other benefits of concentrating solar power plants include low operating costs, and the ability to produce power during high-demand energy periods and to help increase our energy security—our country's independence from foreign oil imports. There are three solar thermal power systems currently being developed by U.S. industry: parabolic troughs, power towers, and dish/engine systems. Because these technologies involve a thermal intermediary, they can be readily hybridized with fossil fuel and in some cases adapted to utilize thermal storage. The primary advantage of hybridization and thermal storage is that the technologies can provide dispatchable power and operate during periods when solar energy is not available. Hybridization and thermal storage can enhance the economic value of the electricity produced and reduce its average cost. This paper provides an introduction on each of the three technologies, an overview of the technologies, their current status
Economic Sustainability: The history of the Solar Electricity Generating Systems (SEGS) shows impressive cost reductions achieved up to now. Advanced technologies, mass production, economies of scale and improved operation will allow to reduce the solar electricity cost to a competitive level within the next 10 to 15 years. This will reduce the dependency on fossil fuels and thus, the risk of future electricity cost escalation. Hybrid solar-and-fuel plants, at favorable sites, making use of special schemes of finance, can already deliver competitively priced electricity today.
Environmental Sustainability: Life cycle assessment of emissions (bottom) and of land surface impacts of the concentrating solar power systems shows that they are best suited for the reduction of greenhouse gases and other pollutants, without creating other environmental risks or contamination. Most of the collector materials can be recycled and used again for further plants.
Social Sustainability: Their integration into the grid does not require any measures for stabilization or backup capacity. On the contrary, they can be used for these purposes, allowing for a smooth transition from today’s fossil fuel based power schemes to a future renewable energy economy. In sun-belt countries, CSP will reduce the consumption of fossil energy resources and the need for energy imports. The power supply will be diversified with a resource that is distributed in a fair way and accessible by many countries. Process heat from combined generation can be used for seawater desalination and help, together with a more rational use of water, to address the challenge of growing water scarcity in many arid regions. Thus, CSP will not only create thousands of jobs and boost economy, but will also effectively reduce the risks of conflicts related to energy, water and climate change.
Unlike solar (photovoltaic) cells, which use light to produce electricity, concentrating solar power systems generate electricity with heat. Concentrating solar collectors use mirrors and lenses using various mirror configurations to concentrate and focus sunlight onto a thermal receiver, similar to a boiler tube. The receiver absorbs and converts sunlight into heat. The heat is then transported to a steam generator or engine where it is converted into electricity. The heat is then channeled through a conventional generator. The plants consist of two parts: one that collects solar energy and converts it to heat, and another that converts heat energy to electricity. There are three main types of concentrating solar power systems: parabolic troughs, dish/engine systems, and central receiver systems. These technologies can be used to generate electricity for a variety of applications, ranging from remote power systems as small as a few kilowatts (kW) up to grid-connected applications of 200-350 megawatts (MW) or more. That is concentrating solar power systems can be sized for village power (10 kilowatts) or grid-connected applications. Some systems use thermal storage during cloudy periods or at night. Others can be combined with natural gas and the resulting hybrid power plants provide high-value, dispatchable power. The amount of power generated by a concentrating solar power plant depends on the amount of direct sunlight. Like concentrating photovoltaic concentrators, these technologies use only direct-beam sunlight, rather than diffuse solar radiation.
The collector field consists of a large field of single-axis tracking parabolic trough solar collectors. The solar field is modular in nature and is composed of many parallel rows of solar collectors aligned on a north-south horizontal axis. Each solar collector has a linear parabolic-shaped reflector that focuses the sun’s direct beam radiation on a linear receiver located at the focus of the parabola. The collectors track the sun from east to west during the day to ensure that the sun is continuously focused on the linear receiver. A heat transfer fluid (HTF) is heated as it circulates through the receiver and returns to a series of heat exchangers in the power block where the fluid is used to generate high-pressure superheated steam. The superheated steam is then fed to a conventional reheat steam turbine/generator to produce electricity. The spent steam from the turbine is condensed in a standard condenser and returned to the heat exchangers via condensate and feed-water pumps to be transformed back into steam. Condenser cooling is provided by mechanical draft wet cooling towers. After passing through the HTF side of the solar heat exchangers, the cooled HTF is re-circulated through the solar field. Individual trough systems currently can generate about 80 megawatts of electricity. Trough designs can incorporate thermal storage—setting aside the heat transfer fluid in its hot phase—allowing for electricity generation several hours into the evening. Currently, all parabolic trough plants are "hybrids," meaning they use fossil fuel to supplement the solar output during periods of low solar radiation.
IV.a System Application, Benefits, and Impacts
Large-scale Grid Connected Power: The primary application for parabolic trough power plants is large-scale grid connected power applications in the 30 to 300 MW range. Because the technology can be easily hybridized with fossil fuels, the plants can be designed to provide firm peaking to intermediate load power.
Domestic Market: The primary domestic market opportunity for parabolic trough plants is in the areas where the best direct normal solar resources exist. However, other nearby places may provide excellent opportunities as well. With utility restructuring, and an increased focus on global warming and other environmental issues, many new opportunities such as renewable portfolio standards and the development of solar enterprise zones may encourage the development of new trough plants.
International Markets: With the high demand for new power generation in many developing countries, the next deployment of parabolic troughs could be in any arid regions in developing countries as they are ideally suited for parabolic trough technologies. India, Egypt, Morocco, Mexico, Brazil, Crete (Greece), and Tibet (China) have expressed interest in trough technology power plants. Many of these countries are already planning installations of combined cycle project and implimentations.
IV.b. Benefits
Least Cost Solar Generated Electricity: Trough plants currently provide the lowest cost source of solar generated electricity available. They are backed by considerable valuable operating experience. Troughs will likely continue to be the least-cost solar option for another 5-10 years depending on the rate of development and acceptance of other solar technologies.
Daytime Peaking Power: Parabolic trough power plants have a proven track record for providing firm renewable daytime peaking generation. Trough plants generate their peak output during sunny periods when air conditioning loads are at their peak. Integrated natural gas hybridization and thermal storage have allowed the plants to provide firm power even during non-solar and cloudy periods.
Environmental: Trough plants reduce operation of higher-cost, cycling fossil generation that would be needed to meet peak power demands during sunny afternoons at times when the most photochemical smog, which is aggravated by NO emissions from power plants, is produced. Economic: The construction and operation of trough plants typically have a positive impact on the local economy. A large portion of material during construction can generally be supplied locally. Also trough plants tend to be fairly labor-intensive during both construction and operation, and much of this labor can generally be drawn from local labor markets
seminar ideas
Super Moderator

Posts: 10,003
Joined: Apr 2012
25-04-2012, 12:05 PM

Concentrating Solar Power (CSP):

Concentrating Solar Power (CSP): Concentrating solar power (CSP) plants are utility-scale generators that produce electricity using mirrors or lenses to efficiently concentrate the sun’s energy. The four principal CSP technologies are parabolic troughs, dish-Stirling engine systems, central receivers, and concentrating photovoltaic systems (CPV).
Solar Thermal Electric Power Plants: Solar thermal energy involves harnessing solar power for practical applications from solar heating to electrical power generation. Solar thermal collectors, such as solar hot water panels, are commonly used to generate solar hot water for domestic and light industrial applications. This energy system is also used in architecture and building design to control heating and ventilation in both active solar and passive solar designs.

Photovoltaics: Photovoltaic or PV technology employs solar cells or solar photovoltaic arrays to convert energy from the sun into electricity. Solar cells produce direct current
electricity from the sun’s rays, which can be used to power equipment or to recharge batteries. Many pocket calculators incorporate a single solar cell, but for larger applications, cells are generally grouped together to form PV modules that are in turn arranged in solar arrays. Solar arrays can be used to power orbiting satellites and other spacecraft, and in remote areas as a source of power for roadside emergency telephones, remote sensing, and cathodic protection of pipelines.

Solar Heating Systems: Solar hot water systems use sunlight to heat water. The systems are composed of solar thermal collectors and a storage tank, and they may be active, passive or batch systems.

Passive Solar Energy: It concerns building design to maintain its environment at a comfortable temperature through the sun’s daily and annual cycles. It can be done by (1) Direct gain or the positioning of windows, skylights, and shutters to control the amount of direct solar radiation reaching the interior and warming the air and surfaces within a building; (2) Indirect gain in which solar radiation is captured by a part of the building envelope and then transmitted indirectly to the building through conduction and convection; and (3) Isolated gain which involves passively capturing solar heat and then moving it passively into or out of the building via a liquid or air directly or using a thermal store. Sunspaces, greenhouses, and solar closets are alternative ways of capturing isolated heat gain from which warmed air can be taken.

Solar Lighting: Also known as daylighting, this is the use of natural light to provide illumination to offset energy use in electric lighting systems and reduce the cooling load on HVAC systems. Daylighting features include building orientation, window orientation, exterior shading, saw tooth roofs, clerestory windows, light shelves, skylights, and light tubes. Architectural trends increasingly recognize daylighting as a cornerstone of sustainable design.

Solar Cars: A solar car is an electric vehicle powered by energy obtained from solar panels on the surface of the car which convert the sun’s energy directly into electrical energy. Solar cars are not currently a practical form of transportation. Although they can operate for limited distances without sun, the solar cells are generally very fragile. Development teams have focused their efforts on optimizing the efficiency of the vehicle, but many have only enough room for one or two people.

Solar Power Satellite: A solar power satellite (SPS) is a proposed satellite built in high Earth orbit that uses microwave power transmission to beam solar power to a very large antenna on Earth where it can be used in place of conventional power sources. The advantage of placing the solar collectors in space is the unobstructed view of the sun, unaffected by the day/night cycle, weather, or seasons. However, the costs of construction are very high, and SPSs will not be able to compete with conventional sources unless low launch costs can be achieved or unless a space-based manufacturing industry develops and they can be built in orbit from off-earth materials.

Solar Updraft Tower: A solar updraft tower is a proposed type of renewable-energy power plant. Air is heated in a very large circular greenhouse-like structure, and the resulting convection causes the air to rise and escape through a tall tower. The moving air drives turbines, which produce electricity. There are no solar updraft towers in operation at present. A research prototype operated in Spain in the 1980s, and EnviroMission is proposing to construct a full-scale power station using this technology in Australia.

Renewable Solar Power Systems with Regenerative Fuel Cell Systems:

NASA has long recognized the unique advantages of regenerative fuel cell (RFC) systems to provide energy storage for solar power systems in space. RFC systems are uniquely qualified to provide the necessary energy storage for solar surface power systems on the moon or Mars during long periods of darkness, i.e. during the 14-day lunar night or the12-hour Martian night. The nature of the RFC and its inherent design flexibility enables it to effectively meet the requirements of space missions. And in the course of implementing the NASA RFC Program, researchers recognized that there are numerous applications in government, industry, transportation, and the military for RFC systems as well.

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: concentrated solar power seminar, info sunbelt solar com loc es, seminar topic on concentreted solar power by mirror, seminar report on cocentrating solar power system, phone guard cdma2000, solar boiler doc, concentrated photovoltaic system cpv seminar report paper ppt,
Popular Searches: optimisation of low concentrating line axis dielectric photovoltaic concentrator reference http seminarprojects com thread me, http seminarprojects com thread overview of concentrating solar thermal power, ppt on introduction to solar cooking, solar cooker with parabolic reflector, photovoltaic thermal collectors, sunny leone foking vedus, concentrating collectors ppt,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  solar powered tea leaf cutting machine pdf report Guest 1 75 11-10-2016, 03:21 PM
Last Post: amrutha735
  nanotubes to improve power grid efficiency ppt Guest 1 41 11-10-2016, 03:11 PM
Last Post: amrutha735
Thumbs Up wireless voice communication between solar panel and laser miniproject doucment Guest 1 47 11-10-2016, 03:05 PM
Last Post: amrutha735
  solutions electrical power distribution and transmission faulkenberry coffer Guest 1 44 11-10-2016, 02:19 PM
Last Post: amrutha735
  synopsis power plant scrutinizing system using scada Guest 1 48 11-10-2016, 02:14 PM
Last Post: amrutha735
  solar bike project pdf free downloads Guest 2 37 11-10-2016, 11:09 AM
Last Post: amrutha735
  solar power transmission without medium hypothetical ppt Guest 1 47 08-10-2016, 04:48 PM
Last Post: amrutha735
  pic based automatic solar radiation tracker ppt Guest 1 38 08-10-2016, 02:35 PM
Last Post: amrutha735
  mhd power generation seminar report pdf download Guest 1 48 08-10-2016, 11:11 AM
Last Post: amrutha735
  slide share on low power single phase clock distribution using vlsi technology Guest 1 39 08-10-2016, 10:04 AM
Last Post: amrutha735