graphics processing unit (Download Full Report And Abstract)
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
computer science crazy
Super Moderator

Posts: 3,048
Joined: Dec 2008
22-02-2009, 01:09 AM


There are various applications that require a 3D world to be simulated as realistically as possible on a computer screen. These include 3D animations in games, movies and other real world simulations. It takes a lot of computing power to represent a 3D world due to the great amount of information that must be used to generate a realistic 3D world and the complex mathematical operations that must be used to project and implimentation this 3D world onto a computer screen. In this situation, the processing time and bandwidth are at a premium due to large amounts of both computation and data.

The functional purpose of a GPU then, is to provide a separate dedicated graphics resources, including a graphics processor and memory, to relieve some of the burden off of the main system resources, namely the Central Processing Unit, Main Memory, and the System Bus, which would otherwise get saturated with graphical operations and I/O requests. The abstract goal of a GPU, however, is to enable a representation of a 3D world as realistically as possible. So these GPUs are designed to provide additional computational power that is customized specifically to perform these 3D tasks.


A Graphics Processing Unit (GPU) is a microprocessor that has been designed specifically for the processing of 3D graphics. The processor is built with integrated transform, lighting, triangle setup/clipping, and rendering engines, capable of handling millions of math-intensive processes per second. GPUs form the heart of modern graphics cards, relieving the CPU (central processing units) of much of the graphics processing load. GPUs allow products such as desktop PCs, portable computers, and game consoles to process real-time 3D graphics that only a few years ago were only available on high-end workstations.

Used primarily for 3-D applications, a graphics processing unit is a single-chip processor that creates lighting effects and transforms objects every time a 3D scene is redrawn. These are mathematically-intensive tasks, which otherwise, would put quite a strain on the CPU. Lifting this burden from the CPU frees up cycles that can be used for other jobs.

However, the GPU is not just for playing 3D-intense videogames or for those who create graphics (sometimes referred to as graphics rendering or content-creation) but is a crucial component that is critical to the PC's overall system speed. In order to fully appreciate the graphics card's role it must first be understood.

Many synonyms exist for Graphics Processing Unit in which the popular one being the graphics card .Itâ„¢s also known as a video card, video accelerator, video adapter, video board, graphics accelerator, or graphics adapter.


The first graphics cards, introduced in August of 1981 by IBM, were monochrome cards designated as Monochrome Display Adapters (MDAs). The displays that used these cards were typically text-only, with green or white text on a black background. Color for IBM-compatible computers appeared on the scene with the 4-color Hercules Graphics Card (HGC), followed by the 8-color Color Graphics Adapter (CGA) and 16-color Enhanced Graphics Adapter (EGA). During the same time, other computer manufacturers, such as Commodore, were introducing computers with built-in graphics adapters that could handle a varying number of colors.

When IBM introduced the Video Graphics Array (VGA) in 1987, a new graphics standard came into being. A VGA display could support up to 256 colors (out of a possible 262,144-color palette) at resolutions up to 720x400. Perhaps the most interesting difference between VGA and the preceding formats is that VGA was analog, whereas displays had been digital up to that point. Going from digital to analog may seem like a step backward, but it actually provided the ability to vary the signal for more possible combinations than the strict on/off nature of digital.

Over the years, VGA gave way to Super Video Graphics Array (SVGA). SVGA cards were based on VGA, but each card manufacturer added resolutions and increased color depth in different ways. Eventually, the Video Electronics Standards Association (VESA) agreed on a standard implementation of SVGA that provided up to 16.8 million colors and 1280x1024 resolution. Most graphics cards available today support Ultra Extended Graphics Array (UXGA). UXGA can support a palette of up to 16.8 million colors and resolutions up to 1600x1200 pixels.
Even though any card you can buy today will offer higher colors and resolution than the basic VGA specification, VGA mode is the de facto standard for graphics and is the minimum on all cards. In addition to including VGA, a graphics card must be able to connect to your computer. While there are still a number of graphics cards that plug into an Industry Standard Architecture (ISA) or Peripheral Component Interconnect (PCI) slot, most current graphics cards use the Accelerated Graphics Port (AGP).


There are a lot of incredibly complex components in a computer. And all of these parts need to communicate with each other in a fast and efficient manner. Essentially, a bus is the channel or path between the components in a computer. During the early 1990s, Intel introduced a new bus standard for consideration, the Peripheral Component Interconnect (PCI).It provides direct access to system memory for connected devices, but uses a bridge to connect to the front side bus and therefore to the CPU.

(Download Full Report And Abstract)
Use Search at wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion
Active In SP

Posts: 1
Joined: Jan 2012
20-01-2012, 02:10 PM

send me the Graphics Processing Unit abstract and Full Report

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: download graphic processing unit, video cards abstract, report on graphics processing unit, ece seminar topics about graphics cards, graphical processing unit ppt graphic card, full abstrat on graphic procesing unit, graphics processing unit seminar report ppt,
Popular Searches: graphics card full report, graphics compression, abstract for mini project at graphics in c, raster graphics, placement unit, introduction graphics hardware, project report on graphics card,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  secure atm by image processing pdf jaseelati 0 309 15-01-2015, 03:17 PM
Last Post: jaseelati
  digital parking system project abstract jaseelati 0 728 15-01-2015, 02:42 PM
Last Post: jaseelati
  nuclear battery abstract jaseelati 0 238 10-01-2015, 01:31 PM
Last Post: jaseelati
  clutch ppt free download jaseelati 0 230 05-01-2015, 04:01 PM
Last Post: jaseelati
  secure atm by image processing jaseelati 0 377 01-01-2015, 04:15 PM
Last Post: jaseelati
  military radars abstract jaseelati 0 209 01-01-2015, 01:42 PM
Last Post: jaseelati
  hydrogen superhighway abstract jaseelati 0 258 30-12-2014, 04:51 PM
Last Post: jaseelati
  transmission lines and waveguides by bakshi free download jaseelati 0 221 27-12-2014, 02:14 PM
Last Post: jaseelati
  facets claims processing ppt jaseelati 0 303 23-12-2014, 02:19 PM
Last Post: jaseelati
  large scale power generation using fuel cell ppt download jaseelati 0 216 20-12-2014, 02:01 PM
Last Post: jaseelati