quantum computing full report
• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 seminar class Active In SP Posts: 5,361 Joined: Feb 2011 16-03-2011, 02:09 PM presented by: Joseph Stelmach   quantumComputers.ppt (Size: 223.5 KB / Downloads: 213) Quantum Computing What is a quantum computer?  A quantum computer is a machine that performs calculations based on the laws of quantum mechanics, which is the behavior of particles at the sub-atomic level.  “I think I can safely say that nobody understands quantum mechanics” - Feynman  1982 - Feynman proposed the idea of creating machines based on the laws of quantum mechanics instead of the laws of classical physics.  1985 - David Deutsch developed the quantum turing machine, showing that quantum circuits are universal.  1994 - Peter Shor came up with a quantum algorithm to factor very large numbers in polynomial time.  1997 - Lov Grover develops a quantum search algorithm with O(√N) complexity Representation of Data - Qubits A bit of data is represented by a single atom that is in one of two states denoted by |0> and |1>. A single bit of this form is known as a qubit A physical implementation of a qubit could use the two energy levels of an atom. An excited state representing |1> and a ground state representing |0>. Data Retrieval  In general, an n qubit register can represent the numbers 0 through 2^n-1 simultaneously. Sound too good to be true?…It is!  If we attempt to retrieve the values represented within a superposition, the superposition randomly collapses to represent just one of the original values. Relationships among data – Entanglement  Entanglement is the ability of quantum systems to exhibit correlations between states within a superposition.  Imagine two qubits, each in the state |0> + |1> (a superposition of the 0 and 1.) We can entangle the two qubits such that the measurement of one qubit is always correlated to the measurement of the other qubit. Quantum Gates  Quantum Gates are similar to classical gates, but do not have a degenerate output. i.e. their original input state can be derived from their output state, uniquely. They must be reversible.  This means that a deterministic computation can be performed on a quantum computer only if it is reversible. Luckily, it has been shown that any deterministic computation can be made reversible.(Charles Bennet, 1973) Quantum Gates – Hadamard Simplest gate involves one qubit and is called a Hadamard Gate (also known as a square-root of NOT gate.) Used to put qubits into superposition
 shocksharker Active In SP Posts: 1 Joined: May 2011 13-05-2011, 10:35 PM May i know the author of this article
 Guest Thinking To Register 22-09-2012, 07:13 AM i want a seminar and presentation report on quantum computing under nano technology...........