radioisotope thermoelectric generator full report
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
project report tiger
Active In SP

Posts: 1,062
Joined: Feb 2010
18-02-2010, 12:23 PM

.ppt   RADIOISOTOPE THERMOELECTRIC GENERATOR(RTG).ppt (Size: 674 KB / Downloads: 398)



Radioisotope Thermoelectric Generator is a electrical generator.
It uses a radioactive material as the fuel and uses the fact that radioactive materials generate heat as they decay into nonradioactive materials.
This released heat is converted in to electricity by using Seebeck effect using an array of thermocouples.
The output obtained in a RTG is a steady output voltage and its power capacity is a few 100 W.
RTG provides an uninterrupted and reliable source of heat and electricity in remote and harsh environment such as deep space.
Considered as a type of battery and so used as power sources in satellites, space probes and unmanned remote facilities.
It provides power and heat for spacecrafts to many years.
Also known as space batteries or nuclear batteries.

The first RTG launched in space by the United States was in 1961 aboard the
SNAP 3 in Navy Transit 4 A spacecraft.
One of the first terrestrial uses of RTG was in 1966 by US Navy at the uninhabitted Fairway Rock island in Alaska, where it remained in use until its removal in 1995.
Used with Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, and New Horizons.
Used to power two Viking landers and for the scientific experiments left on the Moon by the Appollo 12.
In addition to spacecraft, the Soviet Union constructed many unmanned lighthouses and navigation beacons powered by RTGs. There are approximately 1000 such RTGs in Russia. However, criticed argue that they could cause environmental and security problems, as leakage or theft of the radio active material could pass unnoticed for years (or possibly forever: some of these light houses cannot be found because of poor record keeping).
Utilized by the United States Air Force to power remote sensing stations.
In the past, small plutonium cells were used in implanted heart pacemakers to ensure a very long battery life.
Although not strictly RTGs, similar units called radioisotopes heater units are also used by various spacecraft including the Mars Exploration Rovers, Galileo and Cassini. RTGs were also used for the Nimbus, Transit and Les satellites.


Based on the standards of nuclear technology. Main component is a sturdy container, full of radioactive material (fuel).
Walls of the container are pierced by thermocouples. Other end of the thermocouple is connected to a heat sink.
Passive radioactive decay in radioactive material causes it to produce heat. Heat flow through thermocouple and out the heat sink, generating electricity in process. Thermocouple is made of two kinds of metal ( or semiconductors) that can both conduct electricity. They are connected to each other in a closed loop. If the two junctions are at different temperatures, an electric current will flow in the loop.
Commonly used thermoelectric materials are Germanium alloys, Lead telluride and Tellurides of Antimony, Germanium and Silver.


The half-life must be long enough that it will produce energy at a relatively continuous rate for a reasonable amount of time. And at the same time, the half-life needs to be short enough so that it decays sufficiently quickly to generate a usable amount of heat.
The fuel must produce a large amount of energy per mass and volume (density). It should produce high energy radiation that is easily absorbed and transferred into thermal radiation, preferably alpha radiation.


Most RTGs use 238 Pu which decays with a half life of 87.7 years.
RTG using Pu will diminish in power output by 1-.51/87.7 or .787% of there capacity per year. 23 years after production, such an RTG will have decreased in power by 1-.523/87.7 or 10% that is providing 83.4% of its initial output.
Thus starting capacity of 470W, after 23 years it would have a capacity of .834 x 470 = 392W.


Higher efficiency means less radioactive fuel is needed to produce the same amount of power and therefore a lighter overall weight for the generator. This is a critically important factor in space flight launch considerations. Thermocouples used in RTGs are very reliable and long lasting, but are very inefficient. So efficiency above 10% have never been achieved and most RTGs have efficiency between 3 “ 7 %.
Thermionic converter, the energy conversion device which relies on the principle of thermionic emission can achieve efficiency between 10 “ 20 %, but require high temperature than at which standard RTGs run.
Thermophotovoltaic cells have an efficiency slightly higher than thermocouples and can be overlaid on top of the thermocouples, potentially doubling efficiency. Theorotical thermophotovoltaic cell designs have efficiency upto 30% but these have yet to built of conformed.


Nuclear runaway scenario is impossible.
Most RTg designs are inherently immune to nuclear meltdown or other runaway problems. Only kind of problems RTGs are subject to use radioactive contamination, which is harmful to environment. To minimize the risk of fuel leakage, fuel is stored in individual modular units with their own heat shielding.
This modular units are surrounded by a layer of Iridium metal and encased in high strength graphite blocks. These two materials are corrosion and heat resistant. Surrounding the graphite blocks is an aeroshell, designed to protect the entire assembly against the heat of reentering the earthâ„¢s atmosphere. Fuel is also stored in ceramic form, that is heat resistant, minimizing the risk of vaporization and aerosolization. The ceramic is highly insoluble.


Used as power sources in satellites, space probes and unmanned remote facilities.
Used as power sources for navigation beacons, radio beacons, light houses and weather stations.
Used at places where solar cells are not viable. Most desirable power source for unmanned and unmaintained situations needing a few 100 watts or less of power of durations too long for fuel cells, batteries and generators.


Usually thermocouples are used for conversion of energy, but their efficiency is very less between 3 to 7 percentage, so it affects the efficiency of the RTG.
If the radioactive material is leaked it will affect the environment harmfully.


Efficiency is an important factor in spaceflight launch cost consideration.
NASA have been developing a next generation radioisotopes - fueled power source called the Stirling Radioisotope Generator (SRG) that uses free “ piston stirling engines coupled to linear alternators to convert heat to electricity.
SRG prototype demonstrated an average efficiency of 23%.
Use of non-contacting moving parts, non-degrading flexural bearing in test units, demonstrated no appreciable degradation over years of operations.
Experimental results demonstrate that an SRG could continue running for decades without maintenance. Vibrations can be eliminated on a concern by implementation of dynamic, balancing or use of dual “ opposed piston movement. Potential applications of a Stiriling radioisotope power system include exploration and science missions to deep “ space, Mars and the Moon.
Active In SP

Posts: 2
Joined: Jul 2010
14-07-2010, 09:37 PM

could u give me full report of radio isotope thermo electric generator
projects wizhard
Active In SP

Posts: 261
Joined: Jul 2010
16-07-2010, 04:33 PM

Radioisotope thermoelectric generator
A radioisotope thermoelectric generator(RTG) is an electrical generator
which obtains its power from radioactive decay. A radioactive material decays and releases heat which is then converted into elecricity through the seebeck effect using thermocouples. satellites, space probes and unmanned remote facilities all have used them as th epower sources.

The nuclear technology guides its design.The
main component is a sturdy container of a radioactive material on whose walls the thermocouple is kept and the he outer end of
each thermocouple connected to a heat sink. Radioactive decay of the fuel
produces heat which flows through the thermocouples to the heat sink,
generating electricity in the process.


The criteria for the selection of the fuel is:
- The half-life must be long enough that it will produce energy at a
relatively continuous rate for a reasonable amount of time
- amount of energy
per mass and volume
- high energy radiation must be produced which is easily absorbed and transferred into thermal radiation.

Plutonium-238, Curium- 244 and Strontium-90 are the most commonly used isotopes.

efficiencies above 10% have never been achieved as the thermocouples are very inefficient. A thermionic converter depending on the principle of thermionic emission can achieve efficiencies between 10-
20%, but require higher temperatures.

Life span
The radioactive material decays and reduces in its radiation and also the the bi-metallic thermocouples used to convert thermal energy into electrical energy degrade. The produce a decrease in the power production.

For full details refer this pdf;

.pdf   23046720-Radioisotope-Thermoelectric-Generator.pdf (Size: 604.99 KB / Downloads: 177)
Use Search at wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion
Active In SP

Posts: 2
Joined: Jul 2010
16-07-2010, 08:01 PM

am not able to open this pdf file 23046720-Radioisotope-Thermoelectric-Generator.pdf can u help me says some error occured while reading...

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Tagged Pages: radioisotope thermoelectric generator, radioisotop ic thermoeletric generator, radioisotope thermoelectric generators ppt, thermoelectric generator, isotope selection for radioisotope thermoelectric generator, thermionic generator pdf in wikipedia, report on thermoelectric generators,
Popular Searches: ppt on thermoelectric power generation, simulation of thermoelectric generator in simulink, solar thermoelectric refrigeration project report pdf, stirling radioisotope generator seminaar, thermoelectric materials, thermoelectric refrigeration pdf, thermoelectric generation projects,

Quick Reply
Type your reply to this message here.

Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  integrated starter generator jaseelati 0 194 25-02-2015, 01:38 PM
Last Post: jaseelati
  electronic power generator using transistor jaseelati 0 328 31-01-2015, 01:52 PM
Last Post: jaseelati
  diesel generator maintenance ppt jaseelati 0 236 23-01-2015, 01:07 PM
Last Post: jaseelati
  automatic timetable generator project report jaseelati 0 235 10-01-2015, 03:58 PM
Last Post: jaseelati
  microturbine generator system seminar report jaseelati 0 309 07-01-2015, 03:42 PM
Last Post: jaseelati
  automatic timetable generator project report jaseelati 0 277 06-01-2015, 04:53 PM
Last Post: jaseelati
  witricity full report project report tiger 28 38,078 30-08-2014, 02:26 AM
Last Post:
  ACCIDENT PREVENTION USING WIRELESS COMMUNICATION full report computer science topics 5 7,574 17-04-2014, 11:07 AM
Last Post: seminar project topic
  silicon on plastic full report computer science technology 2 2,934 13-04-2014, 10:34 PM
Last Post: 101101
  Automatic Emergency Light full report seminar class 7 17,565 08-03-2014, 02:28 PM
Last Post: seminar project topic